Answer on Question \#43116 - Physics - Molecular Physics|Thermodynamics

Question.

Calculate the root mean square velocity of molecule of hydrogen gas at room temperature 27c and calculate the mean kinetic energy of one molecule and one mole.

Given:

$T=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
$m\left(H_{2}\right)=3.34 \cdot 10^{-27} \mathrm{~kg}$
$M\left(\mathrm{H}_{2}\right)=2 \cdot 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~mole}}$
$v=1$ mole
Find:
$\bar{v}=$?
$E_{k}(1$ molecule $)=$?
$E_{k}(1$ mole $)=$?

Solution.

From thermodynamics it's known that the average kinetic energy of the gas is proportional to temperature:

$$
E_{k}=\frac{3}{2} k T
$$

$k=1.38 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}$ is the Boltzmann's constant;
T is the temperature.
$R=k \cdot N_{a}$
$R=8.31 \frac{J}{\mathrm{~mole} \cdot \mathrm{~K}}$ the gas constant;
$N_{a}=6.02 \cdot 10^{23} \mathrm{~mole}^{-1}$ is the Avogadro constant.
So, the kinetic energy of 1 mole is:

$$
E_{k}=\frac{3}{2} k T \cdot N_{a}=\frac{3}{2} R T
$$

On the other hand, from classical mechanics we know that the kinetic energy of a particle is:

$$
E_{k}=\frac{m}{2} \bar{v}^{2}
$$

Therefore, the kinetic energy of N particles is:

$$
E_{k}=N \frac{m}{2} \bar{v}^{2}
$$

There N_{a} molecules in 1 mole of the substance $\rightarrow N=N_{a}$.
The kinetic energy of 1 mole is:

$$
E_{k}=N_{a} \frac{m}{2} \bar{v}^{2}
$$

So,

$$
\begin{gathered}
E_{k}=N_{a} \frac{m}{2} \bar{v}^{2}=\frac{3}{2} R T \rightarrow \bar{v}^{2}=\frac{3 R T}{m N_{a}} \\
v=\frac{m}{M}=\frac{N}{N_{a}}
\end{gathered}
$$

v is the amount of substance;
M is the molar mass.
If $v=1$ mole, then $M=m N_{a}$.
Thus,

$$
\bar{v}^{2}=\frac{3 R T}{M} \rightarrow \bar{v}=\sqrt{\frac{3 R T}{M}}
$$

Let calculate all desired values.
The root mean square velocity is:

$$
\bar{v}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 \cdot 8.31 \cdot 300}{2 \cdot 10^{-3}}}=1934 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The kinetic energy of 1 molecule:

$$
E_{k}(1 \text { molecule })=\frac{m}{2} \bar{v}^{2}=\frac{3}{2} k T=\frac{3}{2} 1.38 \cdot 10^{-23} \cdot 300=6.21 \cdot 10^{-21} \mathrm{~J}
$$

The kinetic energy of 1 mole:

$$
E_{k}(1 \text { mole })=N_{a} E_{k}(1 \text { molecule })=N_{a} \frac{m}{2} \bar{v}^{2}=\frac{3}{2} R T=\frac{3}{2} 8.31 \cdot 300=3739.5 \mathrm{~J}
$$

Answer.

The root mean square velocity is:

$$
\bar{v}=\sqrt{\frac{3 R T}{M}}=1934 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The kinetic energy of 1 molecule:

$$
E_{k}(1 \text { molecule })=\frac{m}{2} \bar{v}^{2}=\frac{3}{2} k T=6.21 \cdot 10^{-21} \mathrm{~J}
$$

The kinetic energy of 1 mole:

$$
E_{k}(1 \text { mole })=N_{a} E_{k}(1 \text { molecule })=N_{a} \frac{m}{2} \bar{v}^{2}=\frac{3}{2} R T=3739.5 \mathrm{~J}
$$

http://www.AssignmentExpert.com/

