Answer on Question \#43115 - Physics - Molecular Physics

Question.

a quantity 4.3 liter of an ideal gas at pressure 2atm is compressed adiabatically to volume 1 liter find
1-the final pressure
2-work done the gas
take gamma constant is 1.4
Given:
$V_{0}=4.3 l$ is the initial volume
$P_{0}=2 \mathrm{~atm}$ is the initial pressure
$V=1 l$ is the final volume
$\gamma=1.4$ is the adiabatic constant
Find:

1) $P=$? the final pressure
2) $A=$? the work done the gas

Solution.

1) The adiabatic process equation:

$$
P V^{\gamma}=\text { const }
$$

So,

$$
P_{0} V_{0}^{\gamma}=P V^{\gamma} \rightarrow P=P_{0}\left(\frac{V_{0}}{V}\right)^{\gamma}
$$

Calculate:

$$
P=2 \cdot\left(\frac{4.3}{1}\right)^{1.4}=2 \cdot 7.7=15.4 \mathrm{~atm}
$$

2) By definition work done is:

$$
A=\int_{V_{0}}^{V} P d V
$$

In our case,

$$
P=\frac{\text { const }}{V^{\gamma}}
$$

But, const $=P_{0} V_{0}^{\gamma}$. Therefore,

$$
P=\frac{P_{0} V_{0}^{\gamma}}{V^{\gamma}}
$$

Calculate the integral to define the work done:

$$
\begin{aligned}
A=\int_{V_{0}}^{V} P d V= & P_{0} V_{0}^{\gamma} \int_{V_{0}}^{V} \frac{d V}{V^{\gamma}}=\left.P_{0} V_{0}^{\gamma} \frac{1}{1-\gamma} \frac{1}{V^{\gamma-1}}\right|_{V_{0}} ^{V}=\frac{P_{0} V_{0}^{\gamma}}{1-\gamma}\left(\frac{1}{V^{\gamma-1}}-\frac{1}{V_{0}^{\gamma-1}}\right)= \\
& =\frac{P_{0} V_{0}}{1-\gamma}\left(\left(\frac{V_{0}}{V}\right)^{\gamma-1}-1\right)
\end{aligned}
$$

Calculate:

$$
\begin{gathered}
A=\frac{2 \cdot 4.3}{1-1.4}\left(\left(\frac{4.3}{1}\right)^{1.4-1}-1\right)=-\frac{8.6}{0.4}(7.7-1)=-21.5 \cdot 6.7=-144 \mathrm{~atm} \cdot l \\
1 \mathrm{~atm}=101300 \mathrm{~Pa} ; 1 l=10^{-3} \mathrm{~m}^{3} \\
A=-144 \mathrm{~atm} \cdot l=-144 \cdot 101300 \cdot 10^{-3}=14587 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=14587 \mathrm{~J}=14.587 \mathrm{~kJ}
\end{gathered}
$$

Answer.

1)

$P=P_{0}\left(\frac{V_{0}}{V}\right)^{\gamma}=15.4 \mathrm{~atm}$
2)
$A=\frac{P_{0} V_{0}}{1-\gamma}\left(\left(\frac{V_{0}}{V}\right)^{\gamma-1}-1\right)=14587 \mathrm{~J}=14.587 \mathrm{~kJ}$

