Answer on Question \#42976, Physics, Mechanics | Kinematics | Dynamics

A lift whose floor to ceiling distance is 2.50 m starts ascending with a constant acceleration of $1.25 \mathrm{~m} / \mathrm{s}$. One second after the start, a bolt begins to fall from the ceiling of the lift. The time which the bolt hits the floor is (take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}$).

Solution:

Let us consider the line of motion of elevator and bolt as the Y-axis and the floor's initial position (when the bolt starts falling) as origin.

At the moment when the bolt starts falling, speed of the elevator and the bolt is

$$
v_{1}=v_{0}+a t=0+1.25 \cdot 1=1.25 \mathrm{~m} / \mathrm{s}
$$

Let t_{1} be the time after which the bolt strikes the floor.
The y-coordinate of the bolt at time t_{1} is

$$
y_{\text {bolt }}=y_{0}+v_{1} t_{1}+\frac{a t_{1}^{2}}{2}=y_{0}+v_{1} t_{1}-\frac{g t_{1}^{2}}{2}=2.5+1.25 t_{1}-\frac{10 t_{1}^{2}}{2}
$$

(As the bolt is freely falling, its acceleration is -g).

The y-coordinate of the floor at time t_{1} is

$$
y_{\text {floor }}=y_{0}+v_{1} t_{1}+\frac{a t_{1}^{2}}{2}=0+1.25 t_{1}+\frac{1.25 t_{1}^{2}}{2}
$$

As the bolt strikes the floor at time $\mathrm{t}_{1}, \mathrm{y}_{\text {bolt }}=\mathrm{y}$ floor
Thus,

$$
\begin{gathered}
2.5+1.25 t_{1}-\frac{10 t_{1}^{2}}{2}=0+1.25 t_{1}+\frac{1.25 t_{1}^{2}}{2} \\
t_{1}^{2}=\frac{5}{10+1.25}=\frac{5}{11.25}=0.444 \\
t_{1}=\sqrt{0.444}=0.67 \mathrm{~s}
\end{gathered}
$$

Answer: $\quad t_{1}=0.67 \mathrm{~s}$.
http://www.AssignmentExpert.com/

