Answer on Question \#42939 - Physics - Mechanics | Kinematics | Dynamics

6. A baseball player hits a ball from 1.3 m above the ground with an initial velocity of $36 \mathrm{~m} / \mathrm{s}$ at an angle of 45 deg. Will it clear a 7.5 m wall located 125 m away?

Solution:

S $=125 \mathrm{~m}$ - horizontal range of the wall;
$\mathrm{V}=36 \frac{\mathrm{~m}}{\mathrm{~s}}$ - initial speed of the ball;
$\alpha=45^{\circ}-$ the angle between the velocity and the horizontal;
$\mathrm{H}=10 \mathrm{~m}$ - initial height;
$\mathrm{h}=7.5 \mathrm{~m}$ - height of the wall;

Equation of the motion for the ball, directed at angle α : (t - time of the flight)
$\mathrm{V}_{\mathrm{x}}=\mathrm{V} \cos \alpha ; \mathrm{V}_{\mathrm{y}}=\mathrm{V} \sin \alpha$;
$x: S=V_{x} t=V t \cos \alpha$
$t=\frac{S}{V \cos \alpha}$
If the height of the ball (h_{b}) will be more then H when it's distance will be S , ball will clear the wall away:
$y: h_{b}-H=V t \sin \alpha-\frac{\mathrm{gt}^{2}}{2}$
$\mathrm{h}_{\mathrm{b}}=\mathrm{H}+\mathrm{Vt} \sin \alpha-\frac{\mathrm{gt}^{2}}{2}$
(1)in(2):
$h_{b}=H+V \frac{S}{V \cos \alpha} \sin \alpha-\frac{g\left(\frac{S}{V \cos \alpha}\right)^{2}}{2}=H+S \tan \alpha-\frac{g}{2}\left(\frac{S}{V \cos \alpha}\right)^{2}$
$=10 \mathrm{~m}+125 \mathrm{~m} \cdot \tan 45^{\circ}-\frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{2}\left(\frac{125 \mathrm{~m}}{36 \frac{\mathrm{~m}}{\mathrm{~s}} \cos 45^{\circ}}\right)^{2}=16.85 \mathrm{~m}$
$h_{b}>h$ because $16.85 \mathrm{~m}>7.5 \mathrm{~m} \Rightarrow$ ball will clear the wall away:

Answer: ball will clear the wall away:

