Answer on Question \#43022 - Physics - Electric Circuits

Question.

Calculate the force per length between two wires carrying same current of 0.2 Ampere and separated by 0.5 meter.

Given:

$I_{1}=I_{2}=I=0.2 \mathrm{~A}$ is the current flowing through each wire
$r=0.5 \mathrm{~m}$ is the distance between two wires

Find:
$\frac{F_{1 \rightarrow 2}}{l}=?$

Solution.

Fig.1. Our problem.
Let consider the Biot-Savart law. The Biot-Savart law is used for computing the resultant magnetic field B at position r generated by a steady current I (for example due to a wire):

$$
B=\frac{\mu_{0}}{4 \pi} \int \frac{I \overrightarrow{d l} \times \vec{r}}{r^{3}}
$$

$\mu_{0}=4 \pi \cdot 10^{-7} \frac{N}{A^{2}}$ is the magnetic constant;
$\overrightarrow{d l}$ is the length of conductor(wire), his direction is the direction of current;
\vec{r} is displacement vector from the wire element to the point at which the field is being computed.

According to the Biot-Savart infinite current-carrying conductor I_{1} at a point r creates a magnetic field with induction:

$$
B_{1}=\frac{\mu_{0}}{4 \pi} \frac{2 I_{1}}{r}
$$

Let remember Ampère's force law:

$$
d F=I B d l \sin \alpha
$$

α is the angle between \vec{B} and $\overrightarrow{d l}$. In our case, $\alpha=90^{\circ} \rightarrow \sin \alpha=1$.

So, for our problem:

$$
\begin{gathered}
F_{1 \rightarrow 2}=I_{2} B_{1} l \\
\frac{F_{1 \rightarrow 2}}{l}=I_{2} B_{1}=I_{2} \frac{\mu_{0}}{4 \pi} \frac{2 I_{1}}{r}=\frac{\mu_{0}}{4 \pi} \frac{2 I_{1} I_{2}}{r}
\end{gathered}
$$

We have, $I_{1}=I_{2}=I$, therefore:

$$
\frac{F_{1 \rightarrow 2}}{l}=\frac{\mu_{0}}{4 \pi} \frac{2 I^{2}}{r}
$$

Calculate:

$$
\frac{F_{1 \rightarrow 2}}{l}=\frac{4 \pi \cdot 10^{-7}}{4 \pi} \cdot \frac{2 \cdot 0.2^{2}}{0.5}=0.16 \cdot 10^{-7}=1.6 \cdot 10^{-8} \frac{\mathrm{~N}}{\mathrm{~m}}
$$

Answer.

$\frac{F_{1 \rightarrow 2}}{l}=\frac{\mu_{0}}{4 \pi} \frac{2 I^{2}}{r}=1.6 \cdot 10^{-8} \frac{\mathrm{~N}}{\mathrm{~m}}$

