Answer on Question \#42915 - Physics - Mechanics | Kinematics | Dynamics

On a foggy day, two drivers spot each other when they are 80m apart. they are travelling at $72 \mathrm{~km} / \mathrm{h}$ and $60 \mathrm{~km} / \mathrm{h}$. both of them simultaneously apply brakes which retards both the cars at a rate of $5 \mathrm{~m} / \mathrm{s}^{\wedge} 2$. determine whether they avert collision or not?

Solution:

$\mathrm{v}_{1}=72 \frac{\mathrm{~km}}{\mathrm{~h}}=20 \frac{\mathrm{~m}}{\mathrm{~s}}-$ velocity of the first car;
$v_{2}=60 \frac{\mathrm{~km}}{\mathrm{~h}}=16.7 \frac{\mathrm{~m}}{\mathrm{~s}}$ - velocity of the second car;
$\mathrm{a}=5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}-$ deceleration of the cars;
$D=80 \mathrm{~m}-$ initial distance between two cars.

Drivers can avert collision if the sum of the braking distances will be less then 80 m . Lets find the distance travelled by both before they come to a halting stop.

Rate equation for the first car (final velocity is zero, t_{1} - time of breaking):

$$
\begin{align*}
0 & =v_{1}-a t_{1} \\
t_{1} & =\frac{v_{1}}{a} \quad(1) \tag{1}
\end{align*}
$$

Equation of motion for the first car (S_{1}-braking distance for the first car):

$$
\begin{equation*}
S_{1}=v_{1} t_{1}-\frac{a t_{1}^{2}}{2}=|u \operatorname{sing}(1)|=v_{1} \frac{v_{1}}{a}-\frac{a}{2}\left(\frac{v_{1}}{a}\right)^{2}=\frac{v_{1}^{2}}{2 a} \tag{2}
\end{equation*}
$$

Rate equation for the second car (final velocity is zero, t_{2} - time of breaking):

$$
\begin{align*}
0 & =\mathrm{v}_{2}-\mathrm{at}_{2} \\
\mathrm{t}_{2} & =\frac{\mathrm{v}_{2}}{\mathrm{a}} \quad \text { (3) } \tag{3}
\end{align*}
$$

Equation of motion for the first car (S_{2}-braking distance for the second car):

$$
\begin{gather*}
\mathrm{S}_{2}=\mathrm{v}_{2} \mathrm{t}_{2}-\frac{\mathrm{at}_{2}^{2}}{2}=\mid \text { using }(3) \left\lvert\,=\mathrm{v}_{2} \frac{\mathrm{v}_{2}}{\mathrm{a}}-\frac{\mathrm{a}}{2}\left(\frac{\mathrm{v}_{2}}{\mathrm{a}}\right)^{2}=\frac{\mathrm{v}_{2}^{2}}{2 \mathrm{a}}\right. \\
\mathrm{~S}=\mathrm{S}_{1}+\mathrm{S}_{2} \\
\text { (2)and(4)in(5): } \\
\mathrm{S}=\frac{\mathrm{v}_{1}^{2}}{2 \mathrm{a}}+\frac{\mathrm{v}_{2}^{2}}{2 \mathrm{a}}=\frac{\mathrm{v}_{1}^{2}+\mathrm{v}_{2}^{2}}{2 \mathrm{a}}=\frac{\left(16.7 \frac{\mathrm{~m}}{\mathrm{~S}}\right)^{2}+\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=67.9 \mathrm{~m} \\
\mathrm{~S}<\mathrm{D} \Rightarrow
\end{gather*}
$$

Since they are 80 m apart and sum of both their distance is less than 80 m , they would stop before time. There would no collision.

Answer: drivers will avert the collision.

