Answer on Question \#42908 - Physics - Other

39. The measured value of the length of a simple pendulum is 20 cm known with 2 mm accuracy. The time for 50 oscillations was measured to be 40 s with 1 s resolution. Calculate the percentage accuracy in the determination of acceleration due to gravity g from the above measurements.

Solution.

The formula for pendulum period calculation is
$T=2 \pi \sqrt{\frac{l}{g}}$
Therefore
$g=\left(\frac{2 \pi}{T}\right)^{2} l$
So error in calculation g is:
$\frac{\Delta g}{g}=2 \frac{\Delta T}{T}+\frac{\Delta l}{l}$
From condition:
$\frac{\Delta l}{l}=\frac{2 \mathrm{~mm}}{20 \mathrm{~cm}}=0.01$
$\frac{\Delta T}{T}=\frac{1 s}{40 s}=0.025$
So
$\frac{\Delta g}{g}=2 * 0.025+0.01=0.06=6 \%$
Answer: (a) 6\%
40. Which of the following curve represents the variation of total energy with radius r for satellite in a circular orbit?

Solution.

Total energy:

$E_{t o t}=E_{K}+E_{p o t}$
Potential energy:
$E_{p o t}=-\frac{G M m}{r}$
Kinetic energy with $2^{\text {nd }}$ Newton's law:
$E_{K}=\frac{m V^{2}}{2}$
$F_{g}=m a_{\text {cen }} \Rightarrow \frac{G M m}{r^{2}}=\frac{m V^{2}}{r}$
Thus:
$E_{K}=\frac{G M m}{2 r}$
Then total energy:
$E_{\text {tot }}=\frac{G M m}{2 r}-\frac{G M m}{r}=-\frac{G M m}{2 r}$
This situation corresponds to curve R or S - they are similar
Answer: (c) R, (d) S
http://www.AssignmentExpert.com/

