
Answer on Question #42907 - Physics - Other

42. Figure shows three particles with charges q_1 =+2Q, q_2 =-2Q and q_3 =-4Q, each a distance d from origin. Find the net electric field **E** at the origin:

Solution.

Due to superposition principle:

$$E_{x} = E_{1x} + E_{2x} + E_{3x}$$

$$E_y = E_{1y} + E_{2y} + E_{3y}$$

Absolute values of electric field at the origin (directions are shown at the draw)

$$E_1 = \frac{1}{4\pi\varepsilon_0} * \frac{2Q}{d^2}; E_2 = \frac{1}{4\pi\varepsilon_0} * \frac{2Q}{d^2}; E_3 = \frac{1}{4\pi\varepsilon_0} * \frac{4Q}{d^2}$$

Thus:

$$E_{x} = \frac{1}{4\pi\varepsilon_{0}} * \frac{\cos\theta}{d^{2}} (2Q + 2Q + 4Q) = \frac{8 * \frac{\sqrt{3}}{2} * Q}{4\pi\varepsilon_{0}d^{2}} \approx \frac{6.93Q}{4\pi\varepsilon_{0}d^{2}}$$

$$E_{y} = \frac{1}{4\pi\varepsilon_{0}} * \frac{\sin\theta}{d^{2}} (-2Q - 2Q + 4Q) = 0$$

Answer:(b)
$$\frac{6.93Q}{4\pi\varepsilon_0d^2}$$
 towards+ve

x-axis

http://www.AssignmentExpert.com/