Answer on Question #42905, Physics, Other

43. Conditions: In Millikan's experiment, an oil drop or radius $r = 1.64 \cdot 10^{-6} m$ and density $\rho = 0.85 gm/cm^3$ is suspended when a downward electric field of $E = 1.9 \cdot 10^5 N/C$ is applied. What is the charge q on the drop in terms of e?

Solution:

Eq = mg;

$$m = V \rho = \frac{4}{3}\pi r^3 \rho;$$

 $q = N \cdot (-e); N = q/e;$
 $q = mg/E = \frac{4}{3}\pi r^3 \rho/E;$
 $N = \frac{4}{3}\pi r^3 \rho/(-eE) \approx 5;$
Answer:c) $q = -5e$.

44. Conditions: A uniformly charged conducting sphere of diameter d=1.2~m has a surface charge density $\sigma=8.1 \mu C/m^2$. Find the total electric flux Φ leaving the surface of the sphere.

Solution:

$$S = \pi d^2;$$

 $q = \sigma S;$
 $E = kq/R^2 = k\sigma S/R^2;$
 $\Phi = ES = k\sigma S^2/R^2 = (2\pi d)^2 k\sigma = 4 \cdot 10^6 \ Nm^2/C;$
Answer: a) $\Phi = 4 \cdot 10^6 \ Nm^2/C$.

45. Conditions: A thin nonconducting rod of length a=0.5m; has a positive charge of uniform linear density $\sigma=10^{-12}C/m$. Find the electric potential ϕ due to the rod at a point, which is at perpendicular distance of l=0.01m from one end of the rod.

Solution:

$$\phi = \int dq/4\pi r = \int_{0}^{0.5} \sigma dx/4\pi r = \int_{0}^{0.5} \sigma dx/4\pi \sqrt{l^2 + x^2} = (\sigma/4\pi) \cdot \int_{0}^{0.5} d(x/l)/\sqrt{1 + (x/l)^2} = (\sigma/4\pi) \cdot \ln(x/l + \sqrt{1 + (x/l)^2}) = 0.04V$$

Answer: b) $\phi = 0.04V$.