Answer on Question \#42905, Physics, Other

43. Conditions: In Millikan's experiment, an oil drop or radius $r=1.64 \cdot 10^{-6} m$ and density $\rho=0.85 \mathrm{gm} / \mathrm{cm}^{3}$ is suspended when a downward electric field of $E=1.9 \cdot 10^{5} \mathrm{~N} / \mathrm{C}$ is applied. What is the charge q on the drop in terms of e ?

Solution:
$E q=m g ;$
$m=V \rho=\frac{4}{3} \pi r^{3} \rho ;$
$q=N \cdot(-e) ; \quad N=q / e ;$
$q=m g / E=\frac{4}{3} \pi r^{3} \rho / E ;$
$N=\frac{4}{3} \pi r^{3} \rho /(-e E) \simeq 5$;
Answer:c) $q=-5 e$.
44. Conditions: A uniformly charged conducting sphere of diameter $d=1.2 \mathrm{~m}$ has a surface charge density $\sigma=8.1 \mu \mathrm{C} / \mathrm{m}^{2}$. Find the total electric flux Φ leaving the surface of the sphere. Solution:
$S=\pi d^{2} ;$
$q=\sigma S ;$
$E=k q / R^{2}=k \sigma S / R^{2} ;$
$\Phi=E S=k \sigma S^{2} / R^{2}=(2 \pi d)^{2} k \sigma=4 \cdot 10^{6} \mathrm{Nm}^{2} / \mathrm{C} ;$
Answer: a) $\Phi=4 \cdot 10^{6} \mathrm{Nm}^{2} / \mathrm{C}$.
45. Conditions: A thin nonconducting rod of length $a=0.5 m$; has a positive charge of uniform linear density $\sigma=10^{-12} \mathrm{C} / \mathrm{m}$. Find the electric potential φ due to the rod at a point, which is at perpendicular distance of $l=0.01 \mathrm{~m}$ from one end of the rod.

Solution:

$$
\begin{aligned}
& \varphi=\int d q / 4 \pi r=\int_{0}^{0.5} \sigma d x / 4 \pi r=\int_{0}^{0.5} \sigma d x / 4 \pi \sqrt{l^{2}+x^{2}}=(\sigma / 4 \pi) \cdot \int_{0}^{0.5} d(x / l) / \sqrt{1+(x / l)^{2}}= \\
& =(\sigma / 4 \pi) \cdot \ln \left(x / l+\sqrt{1+(x / l)^{2}}\right)=0.04 V
\end{aligned}
$$

Answer: b) $\varphi=0.04 \mathrm{~V}$.

