Answer on Question \#42904 - Physics - Electric Circuits

47. In a given circuit, each cell has an e.m.f. of 0.15 V and internal resistance of 0.25Ω. Find the current in the circuit.

Solution.

Lets sign the circuit current with I.
Due to symmetry, as a consequence of Kirchhoff's current law:
$I=\sum_{\mathrm{i}=1}^{10} I_{i}=10 I_{i}$
Where I_{i} is a current through one of the branches with e.m.f.
From Kirchhoff's voltage law:
$3 \varepsilon=\frac{1}{10} I \cdot 3 r+I \cdot R$
Therefore:
$I=\frac{3 \varepsilon}{R+\frac{3}{10} r}$
Numerically:
$I=\frac{3 \cdot 0.15 V}{10 \Omega+\frac{3}{10} \cdot 0.25 \Omega} \approx 0.045 \mathrm{~A}$
Answer: (c) 0.045A

