Answer on Question \#42899, Physics, Other

Figure shows three particles with charges $q_{1}=+2 Q, q_{2}=-2 Q$ and $q_{3}=-4 Q$, each a distance d from the origin. Find the net electric field \vec{E} at the origin.

Solution:

Electric field is defined as the electric force per unit charge. The direction of the field is taken to be the direction of the force it would exert on a positive test charge. The electric field is radially outward from a positive charge and radially in toward a negative point charge.

$$
\vec{E}=\frac{\vec{F}}{q}=\frac{q}{4 \pi \varepsilon_{0} d}
$$

The net field is

$$
\begin{gathered}
\vec{E}_{n e t}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3} \\
E_{n e t}=2 E_{3} \cos 30^{\circ}=\frac{2 \cdot 4 Q}{4 \pi \varepsilon_{0} d} \cos 30^{\circ}=\frac{8 Q}{4 \pi \varepsilon_{0} d} \frac{\sqrt{3}}{2}=\frac{6.93 Q}{4 \pi \varepsilon_{0} d}
\end{gathered}
$$

Answer: (b) $E_{n e t}=\frac{6.93 Q}{4 \pi \varepsilon_{0} d}$ towards + ve x-axis.

