Answer on Question \#42897 - Physics - Other

35. A 70 cm long sonometer wire is in unison with a tuning fork. If the length of the wire is decreased by 1.0 cm , it produces 4 beats per second with the same tuning fork. The frequency of the tuning fork is:

Solution.

The formula for the sonometer frequency is:
$f=\frac{1}{2 L} \sqrt{\frac{F}{\mu}}$
Where
L is the length, F is the applied force and μ is the mass per unit length.
Thus:
$f_{1}=\frac{1}{2 L_{1}} \sqrt{\frac{F}{\mu}}$
$f_{2}=\frac{1}{2 L_{2}} \sqrt{\frac{F}{\mu}}$
And
$f_{2}-f_{1}=\Delta f$
And f_{1} is the frequency of the tuning fork. So:
$f_{2}=f_{1} \frac{L_{1}}{L_{2}}$
And
$f_{1} \frac{L_{1}}{L_{2}}-f_{1}=\Delta f$
Thus
$f_{1}=\frac{\Delta f}{\frac{L_{1}}{L_{2}}-1}$
Numerically:
$f_{1}=\frac{4}{\frac{70}{69}-1} \mathrm{~Hz}=4 * 69 \mathrm{~Hz}=276 \mathrm{~Hz}$

Answer: (c) 276 Hz
36. Two open organ pipes on sounding together produce 5 beats per second. If the length of a smaller pipe is 0.66 m the length of the larger pipe would be:

Solution.

Since a both ends open organ pipe has a node in the middle, and two antinodes at each end, the length of the pipe L is equal to $\lambda / 2$, where λ is the wavelength.
$L=\frac{\lambda}{2}$
$\lambda=\frac{V}{f}$
Where V is the speed of sound in warm air, let's consider it $340 \mathrm{~m} / \mathrm{s}$
$f=\frac{2 V}{L}$
$\Delta f=\frac{2 V}{L_{1}}-\frac{2 V}{L_{2}}$
Therefore
$L_{2}=\frac{1}{\frac{1}{L_{1}}-\frac{\Delta f}{2 V}}$
Numerically
$L_{2} \approx 0.67 \mathrm{~m}$
Answer: (d) 0.67 m
37. An observer moves towards a stationary source of sound with a velocity one-fifth the velocity of sound. What is the percentage change in the apparent frequency?

Solution.

Due to Doppler effect:
$f=f_{0} \frac{V+V_{r}}{V+V_{s}}$
Where V is the velocity of waves in the medium;
V_{r} - the velocity of the receiver relative to the medium; positive if the receiver is moving towards the source (and negative in the other direction);
V_{s} - the velocity of the source relative to the medium; positive if the source is moving away from the receiver (and negative in the other direction)

Therefore:
$f=f_{0} \frac{V+\frac{V}{5}}{V+0}=f_{0} * \frac{6}{5}=1.2 f_{0}$
Answer: (c) increase by 20\%
http://www.AssignmentExpert.com/

