Answer on Question \# 42896, Physics, Other

Task:

32. For a damped harmonic oscillator of mass 200 gm , the values of spring constant and damping constant are, respectively, $90 \mathrm{~N} / \mathrm{m}$ and $0.04 \mathrm{~kg} / \mathrm{s}$. The time taken for its amplitude of vibration to drop to half of its initial values $\left(\log _{e} 2=0.693\right)$:
(a) 7.0 s
(b) 14.2 s
(c) 15.9 s
(d) 26.6 s

Solution:

$\ln \frac{A_{1}}{A_{2}}=\frac{A_{0} e^{-\beta t}}{A_{0} e^{-\beta(t+\Delta t)}}=\ln 2=0.693=\beta \Delta t=\frac{\lambda}{T} \Delta t \Rightarrow \Delta t=\frac{\ln 2 \cdot T}{\lambda}=\frac{\ln 2 \cdot 2 \pi \sqrt{\frac{m}{k}}}{\lambda} \approx 7.0 \mathrm{~s}$
Answer: (a)7.0 s
33. For the following reference circle, the equation for simple harmonic motion (S.H.M.) is:

(a) $x=-2 \sin (2 \pi t+\pi / 4)$
(b) $x=-2 \sin (3 t+\pi / 3)$
(c) $\mathrm{x}=-2 \cos (\pi / 6-\mathrm{t})$
(d) $x=-2 \cos \pi t$

Answer: (b) $x=-2 \sin (3 t+\pi / 3)$

