Answer on Question \#42895, Physics, Other

17. The surface tension and vapour pressure of water at $30^{\circ} \mathrm{C}$ are $7.2 \times 10^{-2} \mathrm{~N} / \mathrm{m}$ and 2.4×10^{3} Pa, respectively. What is the radius of the smallest droplet of water which can be formed without evaporating at $30^{\circ} \mathrm{C}$?

Solution:

In physics, the Young-Laplace equation describes the equilibrium pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension.

$$
\Delta P=\frac{2 T}{r}
$$

where ΔP is the internal pressure relative to the outside pressure, T is the surface tension and r is radius of droplet.

Thus,

$$
r=\frac{2 T}{\Delta P}=\frac{2 \cdot 7.2 \cdot 10^{-2}}{2.4 \cdot 10^{3}}=6.0 \cdot 10^{-5} \mathrm{~m}
$$

Answer: $\quad r=6.0 \cdot 10^{-5} \mathrm{~m}$.
18. The temperature on a Fahrenheit scale is $98.6^{\circ} \mathrm{F}$? What is the corresponding temperature on a Kelvin scale?

Solution:

Fahrenheit to Kelvin conversion formula is

$$
K=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)+273.15
$$

Thus,

$$
5 / 9\left(98.6^{\circ} \mathrm{F}-32\right)+273.15=310.15 \mathrm{~K}
$$

Answer: 310.2 K .

