Answer on Question \#42900 - Physics - Other

23. In an elastic collision, a neutron collides with carbon. How much energy (in percentage) of neutron is transferred to carbon?

Solution.

Let particle 1 be neutron and particle 2 - carbon. Then
$\frac{m_{2}}{m_{1}}=12$
Two conservation laws: energy and linear momentum (one dimension):
$\frac{m_{1} V_{1 i}^{2}}{2}=\frac{m_{1} V_{1 f}^{2}}{2}+\frac{m_{2} V_{2 f}^{2}}{2}$
$m_{1} V_{1 i}=m_{1} V_{1 f}+m_{2} V_{2 f}$
$V_{1 i}, V_{1 f}, V_{2 f}$ are projections and can be negative.
Then
$V_{2 f}=\frac{m_{1}}{m_{2}}\left(V_{1 i}-V_{1 f}\right)$

$$
\begin{gathered}
V_{1 i}^{2}-V_{1 f}^{2}=\left(V_{1 i}-V_{1 f}\right)\left(V_{1 i}+V_{1 f}\right)=\frac{m_{2}}{m_{1}} V_{2 f}^{2}=(\text { from above }) \\
=\frac{m_{2}}{m_{1}}\left(\frac{m_{1}}{m_{2}}\left(V_{1 i}-V_{1 f}\right)\right)^{2}=\frac{m_{1}}{m_{2}}\left(V_{1 i}-V_{1 f}\right)^{2}
\end{gathered}
$$

Thus from last relation:
$m_{2}\left(V_{1 i}+V_{1 f}\right)=m_{1}\left(V_{1 i}-V_{1 f}\right)$
$V_{1 f}=\frac{m_{1}-m_{2}}{m_{2}+m_{1}} V_{1 i}$
Kinetic energy of neutron after collision:
$E_{1 f}=\frac{m_{1} V_{1 f}^{2}}{2}=\left(\frac{m_{1}-m_{2}}{m_{2}+m_{1}}\right)^{2} * \frac{m_{1} V_{1 i}^{2}}{2}=\left(\frac{m_{1}-m_{2}}{m_{2}+m_{1}}\right)^{2} E_{1 i}$
Numerically:
$E_{1 f}=\left(\frac{11}{13}\right)^{2} E_{1 i} \approx 0.72 E_{1 i}$
$0.28 E_{1 i}$ or 28% is transferred to carbon
Answer: (c) 28\%
24. A block of mass 1.0 kg moving on a horizontal surface with speed $2 \mathrm{~m} / \mathrm{s}$ enter the rough surface. The retarding force on the block is given ...

The kinetic energy of the block at $x=100 \mathrm{~m}$ is:

Solution.

The final kinetic energy is the sum of initial kinetic energy and work of the external force:
$E_{K f}=E_{K i}+A$
$E_{K i}=\frac{m V_{0}^{2}}{2}$
$A=\int_{x_{1}}^{x_{2}} F(x) d x$
From relation for retarding force:
$x_{1}=10 m ; x_{2}=100 m ; F(x)=-\frac{k}{x} ; k=0.5 \mathrm{~J}$
So
$A=\int_{x_{1}}^{x_{2}}-\frac{k}{x} d x=-k \ln \frac{x_{2}}{x_{1}}$
Finally:
$E_{K f}=\frac{m V_{0}^{2}}{2}-k \ln \frac{x_{2}}{x_{1}}$
Numerically:
$E_{K f} \approx 0.85 \mathrm{~J}$ The nearest answer is (c) 0.5 J
Answer: (c) 0.5 J
25. The uniform rods of different materials M_{1} and M_{2} have lengths $2 m$ and $3 m$, respectively. The mass per unit length of rods M_{1} and M_{2} are 1 kg and 2 kg , respectively. If the rods are arranged, as shown, the position of c.m. relative to point O is:

Solution.

Relation for center of mass:

$$
\begin{aligned}
& x_{C M}=\frac{x_{C M 1} M_{1}+x_{C M 2} M_{2}}{M_{1}+M_{2}} \\
& M=\rho L ; x_{C M 1}=\frac{L_{1}}{2} ; x_{C M 2}=L_{1}+\frac{L_{2}}{2}
\end{aligned}
$$

Thus:

$$
\begin{gathered}
x_{C M}=\frac{x_{C M 1} \rho_{1} L_{1}+x_{C M 2} \rho_{2} L_{2}}{\rho_{1} L_{1}+\rho_{2} L_{2}}=\frac{\frac{\rho_{1} L_{1}^{2}}{2}+\rho_{2} L_{2}\left(L_{1}+\frac{L_{2}}{2}\right)}{\rho_{1} L_{1}+\rho_{2} L_{2}} \\
=\frac{L_{1}^{2}+\frac{\rho_{2}}{\rho_{1}} L_{2}\left(2 L_{1}+L_{2}\right)}{2\left(L_{1}+\frac{\rho_{2}}{\rho_{1}} L_{2}\right)}
\end{gathered}
$$

$\frac{\rho_{2}}{\rho_{1}}=2$
Numerically:
$x_{C M} \approx 2.9 m$
Answer: (c) 2.9 m

