Answer on Question \#42890, Physics, Electric Circuits

16. A battery of V voltage is connected across the potentiometer wire AC of total resistance R_{0} as shown. Calculate the potential across the resistance R if the sliding contact point B is exactly at the middle of the potentiometer wire:

Solution:

The equivalent scheme is

The total equivalent resistance is

$$
R_{e q}=R_{B C}+R_{A B}=\frac{R_{0}}{2}+\frac{R R_{0}}{2 R+R_{0}}=\frac{R_{0}\left(2 R+R_{0}\right)+2 R R_{0}}{2\left(2 R+R_{0}\right)}=\frac{R_{0}\left(4 R+R_{0}\right)}{2\left(2 R+R_{0}\right)}
$$

The current in point C is

$$
I_{C}=\frac{V}{R_{e q}}
$$

The voltage across R is

$$
V_{R}=I_{C} R_{A B}=\frac{V}{R_{e q}} \frac{R R_{0}}{2 R+R_{0}}=V \frac{2\left(2 R+R_{0}\right)}{R_{0}\left(4 R+R_{0}\right)} \frac{R R_{0}}{2 R+R_{0}}=V \frac{2 R}{4 R+R_{0}}
$$

Answer: $\quad V_{R}=\frac{2 V R}{R_{0}+4 R}$

