Answer on Question #42888, Physics, Molecular Physics | Thermodynamics Task:

1. A paramagnetic gas at temperature 27°C is placed in an external uniform H magnetic field of magnitude 1.5 T. If the atoms of the gas have magnetic dipole moment $\mu = 2.0\mu_B$, , then the energy difference between parallel alignment and antiparallel alignment of the

atom's magnetic dipole moment with the magnetic field is :

(a) 2.3 x 10 ⁻²² J	<i>(b)5.6</i> x 10 ⁻²³ J
(c)1.9 x 10 ⁻²⁴ J	(d) 1.6 x 10 ⁻²⁵ J

Solution:

$$\theta_1 = 0, \theta_2 = 180^{\circ}, \mu_B = 9.27 \cdot 10^{-24} J / T.$$

$$\mu H (\cos \theta_1 - \cos \theta_2) = 2\mu H = 4\mu_B \cdot 1.5 = 6 \cdot 9.27 \cdot 10^{-24} \approx 5.6 \cdot 10^{-23} J$$

Answer: (b)5.6 x 10⁻²³ J

- 2. A series RLC circuit has inductance L = 12 mH, capacitance C = 1.2 μ F, and resistance R = 12 Ω . At what time will the amplitude of the charge oscillations in the circuit be 10% of its initial value?
 - (a)2.0ms (b)3.0ms
 - (c)4.0ms (d) 5.0ms

Solution:

$$\ln \frac{A_0 e^{-\beta t}}{A_0 e^{-\beta (t+\Delta t)}} = \ln(1/0.1) = \beta \Delta t = \frac{2R}{L} \Delta t \Longrightarrow \Delta t = \frac{\ln(1/0.1)L}{2R} \approx 2.0 ms$$

Answer: (a)2.0ms

http://www.AssignmentExpert.com/