Answer on Question \#42740, Physics, Molecular Physics - Thermodynamics

During an experiment an ideal gas is found to obey an additional law $P V^{2}=$ constant. The gas is initially at temperature T and volume V , when it expands to volume 2 V , the resulting temperature is (1) $T / 2(2) 2 T(3) 2^{1 / 2} T$ (4) $T / 2^{1 / 2}$

Solution
For any ideal gas we have

$$
\frac{p V}{T}=\mathrm{const}
$$

From $p V^{2}=$ const we can conlude that

$$
T V=\mathrm{const}
$$

Hence, when new volume will be $2 V$, new temperature will be $T / 2$

