Answer on Question \#42670-Physics-Mechanics-Kinematics-Dynamics

A balloon is ascending vertically with an acceleration of $0.2 \mathrm{~m} / \mathrm{s}$ square .two stones are dropped from it at an interval of 2 sec . Find the distance between them 1.5 sec . After the second stone is released

Solution

$$
t_{1}=2 \mathrm{~s}, t_{2}=1.5 \mathrm{~s}, a=0.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Let V be the velocity of the balloon when the first stone is dropped from A , the velocity of the balloon, when the second stone is dropped from B, is

$$
V_{1}=V+a t_{1}=V+0.2 \cdot 2=V+0.4 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Then

$$
A B=V t_{1}+\frac{a t_{1}^{2}}{2}=2 V+0.2 \cdot \frac{2^{2}}{2}=2 V+0.4 m
$$

Both these particles will start moving upwards from A and B with these velocities V and V_{1} respectively.
After 3.5 seconds when the first stone was dropped, i.e. 1.5 seconds when the second stone was dropped, let the two stones be at C and D respectively. Obviously D is above C and

$$
\begin{aligned}
& A C=3.5 V-\frac{1}{2} g \cdot 3.5^{2} . \\
& B D=1.5 V_{1}-\frac{1}{2} g \cdot 1.5^{2} .
\end{aligned}
$$

Distance between the two stones at this time

$$
\begin{aligned}
C D=A D-A C & =(A B+B D)-A C=\left(2 V+0.4+1.5(V+0.4)-\frac{1}{2} g \cdot 1.5^{2}\right)-\left(3.5 V-\frac{1}{2} g \cdot 3.5^{2}\right) \\
& =1+5 g=50 m
\end{aligned}
$$

Answer: 50 m.

