Answer on Question 42655, Physics, Electric Circuits

For given single copper wire, $R=\frac{\rho L}{\pi r_{1}^{2}}$, where $R=10$ is resistance, L is the length of the wire, $r_{1}=6 \mathrm{~mm}$ is the radius of the wire. From last formula, $L=\frac{\pi R r_{1}^{2}}{\rho}$.

For one wire out of five of the same length as given single copper wire, resistance is $R_{2}=\frac{\rho L}{\pi r_{2}^{2}}$, where $r_{2}=2 \mathrm{~mm}$ is the radius.

Substituting formula for length L into last formula, obtain $R_{2}=R \frac{r_{1}^{2}}{r_{2}^{2}}$. This is the resistance of one wire.
Since 5 wires are insulated, they are connected in parallel, and total resistance is

$$
R=\frac{R_{2}}{5}=\frac{R}{5} \frac{r_{1}^{2}}{r_{2}^{2}}=\frac{90}{5} \Omega=18 \Omega .
$$

Hence, the answer is C).

