Answer on Question 42653, Electric Circuits

We are given, $l_{1}: l_{2}: l_{3}=3: 2: 1$ and $m_{1}: m_{2}: m_{3}=1: 2: 3$.
The formula for resistance in terms of length and cross area is $R=\frac{\rho_{1} L}{S}$, where ρ_{1} is resistance of wire of unit length and unit cross area. The mass is $m=\rho V=\rho S L$, where ρ is density. From last expression, $\quad S=\frac{m}{\rho L}$. Plugging this into formula for resistance gives $\quad R=\frac{\rho \rho_{1} L^{2}}{m} \sim \frac{L^{2}}{m}$.

Thus, $\quad R_{1} \sim \frac{3^{2}}{1}, \quad R_{2} \sim \frac{2^{2}}{2}=2, \quad R_{3} \sim \frac{1^{2}}{3}=\frac{1}{3}$.
Hence, the ratio of resistances is $9: 2: \frac{1}{3}$, or 27:6:1.
The answer is A).

