Answer on Question 42653, Electric Circuits

We are given, $l_1:l_2:l_3=3:2:1$ and $m_1:m_2:m_3=1:2:3$.

The formula for resistance in terms of length and cross area is $R = \frac{\rho_1 L}{S}$, where ρ_1 is resistance of wire of unit length and unit cross area. The mass is $m = \rho V = \rho S L$, where ρ is density. From last expression, $S = \frac{m}{\rho L}$. Plugging this into formula for resistance gives $R = \frac{\rho \rho_1 L^2}{m} \sim \frac{L^2}{m}$.

Thus,
$$R_1 \sim \frac{3^2}{1}$$
 , $R_2 \sim \frac{2^2}{2} = 2$, $R_3 \sim \frac{1^2}{3} = \frac{1}{3}$.

Hence, the ratio of resistances is $9:2:\frac{1}{3}$, or 27:6:1.

The answer is A).