Answer on Question \#42652-Physics-Electric Circuits

A rectangular metal block has dimensions $3 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}$. The ratio of the resistance measured between the two opposite rectangular faces to that measured between the two square faces of the block is

A1:3B1:9C3:1D9:1

Solution

$$
L_{2}=0.01 \mathrm{~m}, \quad L_{1}=0.03 \mathrm{~m} .
$$

The area of a square end is $A_{1}=L_{2}^{2}$.
The resistance of the block measured between the two square ends

The area of a rectangular face is $A_{2}=L_{1} \cdot L_{2}$.
The resistance between two opposing rectangular faces

$$
R_{2}=\frac{\rho L_{2}}{A_{2}} .
$$

The ratio of the resistance measured between the two opposite rectangular faces to that measured between the two square forces of the block is

$$
\frac{R_{2}}{R_{1}}=\frac{A_{1} L_{2}}{L_{1} A_{2}}=\frac{\left(L_{2}^{2}\right) L_{2}}{L_{1}\left(L_{1} \cdot L_{2}\right)}=\left(\frac{L_{2}}{L_{1}}\right)^{2}=\left(\frac{0.01}{0.03}\right)^{2}=\frac{1}{9} .
$$

Answer: B1:9

