Answer on Question \#42627 - Physics - Mechanics | Kinematics | Dynamics

a train passes an electric post in 10 second and a bridge of length 2 km in 110 seconds. the speed of the engine is?

Solution:

$d=2000 m$ - length of the bridge;
L - length of the train;
$\mathrm{v}-$ speed of the train;
$\mathrm{t}_{1}=10 \mathrm{~s} ; \quad \mathrm{t}_{2}=110 \mathrm{~s} ;$

Train passes an electric post in time t_{1} :

$$
\begin{equation*}
\frac{\mathrm{L}}{\mathrm{v}}=\mathrm{t}_{1} \Rightarrow \mathrm{~L}=\mathrm{vt}_{1} \tag{1}
\end{equation*}
$$

Train passes a bridge in time t_{2} :

$$
\begin{gathered}
\frac{L+d}{v}=t_{2} \\
(1) \operatorname{in}(2): \\
\frac{v t_{1}+d}{v}=t_{2} \\
v=\frac{\mathrm{d}}{\mathrm{t}_{2}-\mathrm{t}_{1}+\mathrm{d}=\mathrm{vt}_{2}}=\frac{2000 \mathrm{~m}}{110 \mathrm{~s}-10 \mathrm{~s}}=20 \frac{\mathrm{~m}}{\mathrm{~s}}=72 \frac{\mathrm{~km}}{\mathrm{~h}}
\end{gathered}
$$

Answer: speed of the engine is $72 \frac{\mathrm{~km}}{\mathrm{~h}}$.

