Answer on Question \#42610, Physics, Mechanics | Kinematics | Dynamics

 Conditions:1) A balloon is released from a tall building. The total mass of the balloon including the enclosed gas is $\mathrm{m}=2.0 \mathrm{~kg}$. Its volume is $\mathrm{V}=5.0 \mathrm{m3}$. The density of air is $\rho=1.3 \mathrm{~kg} / \mathrm{m} 3$.

The most probable questions: what the resulting force acting on the balloon ($\mathrm{F}=$?); what acceleration has the balloon without extra weight ($a=$?); what maximum weight can be carried by the balloon ($M_{\max }=$?).

Solution:

The balloon will hill his own weight ($m * g$) and a force due to Archimedes' principle

$$
F_{a r c h}=\rho * V * g ;
$$

Resulting force: $F=F_{\text {arch }}-m g=\rho * V * g-m g=(\rho * V-m) * g=45 N$;
The acceleration of the balloon has up direction: $m a=F ; \quad a=F / m=22.5 \mathrm{~m} / \mathrm{s}$.
Maximum weight that can be carried with the balloon: $M_{\max }=F / g=4.5 \mathrm{~kg}$.

Answer: $F=45 \mathrm{~N} ; a=22.5 \mathrm{~m} / \mathrm{s} ; M_{\max }=4.5 \mathrm{~kg}$.

