Answer on Question #42609, Physics, Electromagnetism

Task: equal charges Q is broken in two parts $Q_1 \& Q_2$ and they are placed at a distance R from each other. The maximum force of repulsion between them will occur, when ? a) $Q_2=Q/R$, $Q_1=Q-Q/R$ b) $Q_2=Q/4$, Q=Q-2Q/3 c) $Q_2=Q/4$, $Q_1=3Q/4$ d) $Q_1=Q/2$, $Q_2=Q/2$

Solution:

Since Q is broken in two parts Q1 & Q2, let Q1=x and Q2=(Q-x). Force of repulsion between them is

 $U_{Q_1,Q_2} = k \frac{Q_1 \cdot Q_2}{R^2}$, where k - Coulomb's constant.

$$U_{Q_1,Q_2} = k \frac{x \cdot (Q-x)}{R^2}.$$

The maxim U_m force of repulsion between them will occur if the condition $\frac{dU}{dx} = 0$.

$$\frac{dU}{dx} = \frac{k}{R^2}(Q - 2x) = 0 \Longrightarrow Q - 2x = 0 \Longrightarrow x = \frac{Q}{2} \Longrightarrow Q_1 = \frac{Q}{2}, Q_2 = Q - \frac{Q}{2} = \frac{Q}{2}.$$

Answer: d) Q1=Q/2,Q2=Q/2.

http://www.AssignmentExpert.com/