Answer on Question \#42609, Physics, Electromagnetism

Task: equal charges Q is broken in two parts $Q_{1} \& Q_{2}$ and they are placed at a distance R from each other. The maximum force of repulsion between them will occur, when ?
a) $\mathrm{Q}_{2}=\mathrm{Q} / \mathrm{R}, \mathrm{Q}_{1}=\mathrm{Q}-\mathrm{Q} / \mathrm{R}$ b) $\mathrm{Q}_{2}=\mathrm{Q} / 4, \mathrm{Q}=\mathrm{Q}-2 \mathrm{Q} / 3$ c) $\mathrm{Q}_{2}=\mathrm{Q} / 4, \mathrm{Q}_{1}=3 \mathrm{Q} / 4$ d) $\mathrm{Q}_{1}=\mathrm{Q} / 2, \mathrm{Q}_{2}=\mathrm{Q} / 2$

Solution:

Since Q is broken in two parts $Q_{1} \& Q_{2}$, let $Q_{1}=x$ and $Q_{2}=(Q-x)$. Force of repulsion between them is $U_{Q_{1}, Q_{2}}=k \frac{Q_{1} \cdot Q_{2}}{R^{2}}$,where k - Coulomb's constant.
$U_{Q_{1}, Q_{2}}=k \frac{x \cdot(Q-x)}{R^{2}}$.
The maxim U_{m} force of repulsion between them will occur if the condition $\frac{d U}{d x}=0$.
$\frac{d U}{d x}=\frac{k}{R^{2}}(Q-2 x)=0 \Rightarrow Q-2 x=0 \Rightarrow x=\frac{Q}{2} \Rightarrow Q_{1}=\frac{Q}{2}, Q_{2}=Q-\frac{Q}{2}=\frac{Q}{2}$.
Answer: d) $\mathrm{Q} 1=\mathrm{Q} / 2, \mathrm{Q} 2=\mathrm{Q} / 2$.

