Answer on Question \#42596 - Physics - Mechanics | Kinematics | Dynamics

if a mass of a planet is 10% less than that of earth and the radius 20% greater than that of earth the acceleration due to gravity on the planet will be?

Solution:

g_{e} - acceleration due to gravity of the Earth;
g_{p} - acceleration due to gravity of the planet;
$\mathrm{M}_{\mathrm{p}}=0.9 \mathrm{M}_{\mathrm{e}}$ - mass of the planet;
$\mathrm{R}_{\mathrm{p}}=1.2 \mathrm{R}_{\mathrm{e}}$ - radius of the planet;
Formula for the acceleration bue to gravity (gravitation equation):

$$
\begin{gather*}
g_{e}=G \frac{M_{e}}{R_{e}^{2}} \\
g_{p}=G \frac{M_{p}}{R_{p}^{2}}=G \frac{0.9 M_{e}}{\left(1.2 R_{e}\right)^{2}} \tag{2}\\
\frac{g_{p}}{g_{e}}=\frac{\frac{0.9 M_{e} G}{\left(1.2 R_{e}\right)^{2}}}{\frac{M_{e} G}{R_{e}^{2}}}=\frac{0.9 M_{e} G}{\left(1.2 R_{e}\right)^{2}} \cdot \frac{R_{e}^{2}}{M_{e} G}=\frac{0.9}{1.2^{2}} \\
g_{p}=g_{e} \frac{0.9}{1.2^{2}}=0.625 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=6.13 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}{ }_{\mathrm{m}}
\end{gather*}
$$

Answer: acceleration due to gravity on the planet will be $6.13 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

