Answer on Question \#42595, Physics, Mechanics | Kinematics
 Dynamics

Question.

The period of a satellite in a circular orbit of radius R is T. The period of another satellite in a circular orbit of radius $4 R$ is?

Solution.

Newton's law of universal gravitation:

$$
F=G \frac{M m}{R^{2}}
$$

F is the force between bodies M and m , the force with which body M acts on body m;
M is a mass of planet;
m is a mass of satellite;
R is a distance between M and m;
$G=6.67 * 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}$ is a gravitational constant.
Newton's second law for the satellite:

$$
F=m a
$$

a is the centripetal acceleration.

$$
\begin{gathered}
a=\frac{v^{2}}{R}=\omega^{2} R \\
v=\omega R
\end{gathered}
$$

v is linear velocity;
ω is the angular velocity.

$$
\omega=\frac{2 \pi}{T}
$$

T is a period of motion.
So,

$$
\begin{aligned}
a & =\frac{v^{2}}{R}=\omega^{2} R \rightarrow a=\frac{4 \pi^{2}}{T^{2}} R \\
F & =m a \rightarrow G \frac{M m}{R^{2}}=m \frac{4 \pi^{2}}{T^{2}} R
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
T^{2}=\frac{4 \pi^{2}}{G M} R^{3} \\
T=\sqrt{\frac{4 \pi^{2}}{G M}} R^{3 / 2}
\end{gathered}
$$

Thus, if $R_{0} \rightarrow 4 R_{0}$:

$$
\begin{gathered}
T_{0}=\sqrt{\frac{4 \pi^{2}}{G M}} R_{0}^{3 / 2} \\
T=\sqrt{\frac{4 \pi^{2}}{G M}} R^{3 / 2}=\sqrt{\frac{4 \pi^{2}}{G M}}\left(4 R_{0}\right)^{3 / 2}=\sqrt{\frac{4 \pi^{2}}{G M}} R_{0}^{3 / 2} \cdot 4^{3 / 2}=\sqrt{\frac{4 \pi^{2}}{G M}} R_{0}^{3 / 2} \cdot 8=8 T_{0}
\end{gathered}
$$

So, if $R_{0} \rightarrow 4 R_{0}$, then $T \rightarrow 8 T_{0}$

Answer.

$8 T$

