Answer on Question #42494 – Physics – Electromagnetism

Question.

A solid cylinder of length L and radius R has a uniform charge density of rho "P". Calculate the electric field vector on the axis of the cylinder, a distance z from the center, and outside the cylinder. i.e.: z > L/2

Solution.

Let break our half-cylinder into many thin threads:

We know that the field of infinite thin thread is:

$$E = \frac{2\lambda}{r}$$

where λ is the uniformly distributed linear charge,

r is a distance from thread to point. In our case $r \rightarrow |z - x|$.

So, electric field of each thread is:

$$dE = \frac{2d\lambda}{|z - x|}$$

Projection on x-axis:

$$dE_x = \frac{2d\lambda}{|z - x|} \cos \alpha$$

If
$$<\frac{L}{2}$$
:

$$q = \rho V = \lambda \cdot 2R \to \lambda = \frac{\rho V}{2R} = \frac{\rho \pi R^2}{2R} L = \frac{\rho \pi R}{2} L$$
$$d\lambda = \frac{\rho \pi R}{2} dx$$
$$dE_x = \frac{2d\lambda}{|z - x|} \cos \alpha = \frac{\rho \pi R}{|z - x|} \cos \alpha dx$$

So,

$$E_x = \int dE_x = \int_0^{-\frac{L}{2} + x} \int_0^{Pi} \frac{\rho \pi R}{|z - x|} \cos \alpha \, d\alpha \, dx = 2\rho \pi R \cdot \ln \frac{L}{2}$$

If $z > \frac{L}{2}$:

$$q = \rho V = \lambda \cdot 2R \to \lambda = \frac{\rho V}{2R} = \frac{\rho \pi R^2}{2R} L = \frac{\rho \pi R}{2} L$$
$$dE_x = \frac{2\lambda}{|z - L/2|} \cos \alpha \, d\alpha = \frac{\rho \pi R L}{|z - L/2|} \cos \alpha \, d\alpha$$

So,

$$E_x = \int dE_x = \int_0^{Pi} \frac{\rho \pi R}{|z - x|} \cos \alpha \, d\alpha = \frac{2\rho \pi RL}{|z - L/2|}$$
$$E_x(z \to \infty) = 0$$

Answer.

$$z < \frac{L}{2} : E_x = 2\rho\pi R \cdot \ln\frac{L}{2}$$

$$z > \frac{L}{2}$$
: $E_x = \frac{2\rho\pi RL}{|z-L/2|}$