

Answer on Question #42326 – Physics – Mechanics | Kinematics | Dynamics

a particle covers 60 km at a uniform speed at 60 km/h. what should be it's speed for the next 120 km if the average speed for the entire journey is 60 km/h.

Solution:

$S_1 = 60$ km – first part of the distance;

$S_2 = 120$ km – second part of the distance;

$V_1 = 60 \frac{\text{km}}{\text{h}}$ – speed on the first part of the distance;

V_2 – speed on the second part of the distance;

$V_a = 60 \frac{\text{km}}{\text{h}}$ – average speed for entire journey;

The average speed is the total distance divided by the total travel time.

$$V_a = \frac{S}{t} \quad (1)$$

The total distance is

$$S = S_1 + S_2 \quad (2)$$

The total time is

$$t = t_1 + t_2 = \frac{S_1}{V_1} + \frac{S_2}{V_2} = \frac{S_1}{V_1} + \frac{S_2}{V_2} = \frac{S_1 V_1 + S_2 V_2}{V_1 V_2} \quad (3)$$

(3)and(2)in(1):

$$V_a = \frac{S_1 + S_2}{\frac{S_1 V_1 + S_2 V_2}{V_1 V_2}} = \frac{V_1 V_2 (S_1 + S_2)}{S_1 V_1 + S_2 V_2}$$

$$S_1 V_1 V_a + S_2 V_2 V_a = V_1 V_2 (S_1 + S_2)$$

$$V_2 (V_1 (S_1 + S_2) - S_2 V_a) = S_1 V_1 V_a$$

$$V_2 = \frac{S_1 V_1 V_a}{V_1 (S_1 + S_2) - S_2 V_a} = \frac{60 \text{ km} \cdot 60 \frac{\text{km}}{\text{h}} \cdot 60 \frac{\text{km}}{\text{h}}}{60 \frac{\text{km}}{\text{h}} (60 \text{ km} + 120 \text{ km}) - 120 \text{ km} \cdot 60 \frac{\text{km}}{\text{h}}} = 60 \frac{\text{km}}{\text{h}}$$

Answer: speed on the next 120 km should be $60 \frac{\text{km}}{\text{h}}$