

Answer on Question #42233-Physics-Molecular Physics-Thermodynamics

PuO₂ has a density of 11.5 g/cm³ and a specific heat capacity of 330 J/kg·K. A fresh sample (i.e. one that has not decayed) of PuO₂ produces 0.540 kW/kg of heat due to internal radioactive decay*. For this question we will consider a 1 cm³ block of PuO₂.

a) How much heat does a fresh 1 cm³ block of PuO₂ produce?

A fresh 1 cm³ block sitting on the bench in the lab glows red hot at 700 K as it loses heat to its environment.

Answer

$$P = m \cdot \frac{dP}{dm} = \rho \cdot V \cdot \frac{dP}{dm} = 11.5 \frac{g}{cm^3} \cdot 1 cm^3 \cdot 0.540 \frac{kW}{kg} = 6.21 W.$$

b) If we place the block, initially at 700K, in a very well insulated container, its temperature will start to rise. How long does it take for the block to reach 1000 K?

Answer

$$P\Delta t = \Delta Q = cm\Delta T \rightarrow \Delta t = \frac{cm\Delta T}{P} = \frac{c\Delta T}{\frac{dP}{dm}} = \frac{330 \frac{J}{kgK} \cdot (1000 K - 700K)}{0.540 \frac{kW}{kg}} = 183 s.$$

c) PuO₂ melts at 2673 K and its latent heat of fusion is 245 kJ/kg. If we place our block in a well insulated and heat resistant container when it is at 700 K, then how long is it before the whole block is melted?

Answer

$$P\Delta t = cm\Delta T + qm \rightarrow \Delta t = \frac{cm\Delta T + qm}{P} = \frac{c\Delta T + q}{\frac{dP}{dm}} = \frac{330 \frac{J}{kgK} \cdot (2673 K - 700K) + 245 \frac{kJ}{kg}}{0.540 \frac{kW}{kg}} \\ = 1.66 \cdot 10^3 s.$$