

Answer on Question #42186 – Physics – Mechanics | Kinematics | Dynamics

Police investigators, examining the scene of an accident involving two cars, measure the 72m long skid marks of one of the cars with a mass of 2500kg. The coefficient of kinetic friction between rubber and pavement is about 0.80. Estimate the initial speed in mph of that car assuming a level road.

Solution:

$S = 72\text{m}$ – traveled distance;

$m = 2500\text{kg}$ – mass of the car;

$k = 0.80$ – coefficient of kinetic friction between rubber and pavement;

V_0 – initial speed of the car.

N – reaction force of the car;

Work-Energy theorem: work done by friction force is equal to change in kinetic energy of the car:

$$W_{\text{friction}} = KE_{\text{final}} - KE_{\text{initial}}$$
$$KE_{\text{final}} = 0 \text{ (because final speed of the car is zero)}$$

$$W_{\text{friction}} = -KE_{\text{initial}} \quad (1)$$

$$KE_{\text{initial}} = \frac{mV_0^2}{2} \quad (2)$$

$$W_{\text{friction}} = -F_{\text{friction}} \cdot S = -Nk \cdot S$$

Work done by friction force has a minus sign, it shows that direction of the force is opposite to direction of motion (cars slows).

Second Newton's law along the Y-axis:

$$N - mg = 0$$

$$N = mg \Rightarrow$$

$$W_{\text{friction}} = -mgk \cdot S \quad (3)$$

(3)and(2)in(1):

$$-mgk \cdot S = -\frac{mV_0^2}{2}$$

$$2gkS = V_0^2$$

$$V_0 = \sqrt{2gkS} = \sqrt{2 \cdot 9.8 \frac{\text{m}}{\text{s}^2} \cdot 0.80 \cdot 72\text{m}} = 33.6 \frac{\text{m}}{\text{s}} = 75.16 \text{ mph}$$

Answer: initial speed is 75.16 mph.