

Answer on Question #42034 – Physics – Mechanics | Kinematics | Dynamics

1. The speed of a motor boat with respect to water is $v = 14 \text{ m/s}$. The speed of water with respect to the banks is 6 m/s . When the boat began travelling upstream, a buoy was dropped from it. A buoy is a body that can float in water. The boat travelled 6.3 km upstream (with respect to banks), turned about and caught up with the buoy. Find the time T lapsed between dropping the buoy and catching up with it again.

$$\begin{aligned} v &= 14 \frac{\text{m}}{\text{s}} \\ u &= 6 \frac{\text{m}}{\text{s}} \\ s &= 6300 \text{ m} \\ T &- ? \end{aligned}$$

Solution.

The speed of the buoy equals to the speed of the river.

When the boat goes upstream, its speed with respect to banks is $v - u$. When the boat goes downstream, its speed with respect to the banks is $v + u$.

One can make an equation of the equality of time, which was elapsed by the buoy and by the boat (the boat goes s upstream and $(s + uT)$ downstream):

$$T = \frac{s}{v - u} + \frac{s + uT}{v + u}.$$

One can find the time T :

$$T = \frac{2s}{v - u}.$$

Let check the dimension: $[T] = \frac{m}{\frac{m}{s}} = s$.

Let evaluate the quantity: $T = \frac{2 \cdot 6300}{14 - 6} \approx 1575 \text{ (s)} \approx 26.3 \text{ (min)}$.

Answer: 26.3 min .

<http://www.AssignmentExpert.com/>