

Answer on Question #42028 – Physics – Mechanics

Question: Water is flowing continuously from a tap having an internal diameter 8×10^{-3} m. The water velocity as it leaves the tap is 0.4 ms^{-1} . The diameter of the water stream at a distance 2×10^{-1} m below the tap is close to :-

- (1) 9.6×10^{-3} m
- (2) 3.6×10^{-3} m
- (3) 5.0×10^{-3} m
- (4) 7.5×10^{-3} m

Solution: Let us use Bernoulli equation:

$$v_2^2 = v_1^2 + 2gh$$

And the fact that water flows continuously

$$S_1 v_1 = S_2 v_2$$

$S = \frac{\pi D^2}{4}$, therefore, we conclude that

$$D_1^2 v_1 = D_2^2 v_2$$

After solution of these two equation we obtain

$$D_2 = \frac{D_1}{\left(1 + \frac{2gh}{v_1^2}\right)^{\frac{1}{4}}} = \frac{8 \cdot 10^{-3}}{\left(1 + \frac{2 \cdot 10 \cdot 0,2}{0,16}\right)^{\frac{1}{4}}} \approx 3,6 \cdot 10^{-3} \text{ m}$$

Answer:

(2) $3,6 \cdot 10^{-3}$ m