


Answer on Question #42022, Physics, Mechanics | Kinematics | Dynamics

SOUND WAVES OF $F = 660\text{Hz}$ FALL NORMALLY ON A PERFECTLY REFLECTING WALL. THE SHORTEST DISTANCE AT WHICH ALL PARTICLES WILL HAVE MAX. AMPLITUDE OF VIBRATION IS :

1. $7/8\text{m}$
2. $3/8\text{m}$
3. $1/8\text{m}$
4. $1/4\text{m}$

Solution:

Reflected frequency (red) reflects back in-phase, resulting in an increase in amplitude (blue).

The shortest distance at which all particles will have maximum amplitude is on distance of $\lambda/4$ from the wall:

$$l_1 = \frac{\lambda}{4}$$

The wavelength is

$$\lambda = \frac{v}{f}$$

where $v = 330 \text{ m/s}$ is velocity of the sound wave, and f is frequency.

Thus,

$$\lambda = \frac{330}{660} = \frac{1}{2} \text{ m}$$

$$l_1 = \frac{1}{8} \text{ m}$$

Answer. 3. $1/8\text{m}$