

Answer on Question #41990 – Physics – Physics, Other

1. Calculate the height above the Earth surface for a satellite with a speed of $7.55 \cdot 10^3$ m/s. Use values' on data sheet for your calculations and give your answer in meters?

$$\begin{array}{l} v = 7.55 \cdot 10^3 \frac{m}{s} \\ R = 6.37 \cdot 10^6 m \\ \hline h - ? \end{array}$$

Solution.

The second Newtons' law for a satellite moving round the Earth:

$$m \cdot a = F, \quad (1)$$

where the acceleration during a circular orbit is $a = \frac{v^2}{R+h}$ and the force of gravity is

$$F = G \frac{mM}{(R+h)^2} \quad (M \text{ is the Earth's mass}).$$

The force of gravity at the surface of the Earth is $mg = G \frac{mM}{R^2}$, so $GM = gR^2$.

The equation (1) becomes

$$m \cdot \frac{v^2}{R+h} = \frac{m}{(R+h)^2} \cdot gR^2.$$

One can find the height, at which satellite moves:

$$h = \frac{gR^2}{v^2} - R.$$

Let check the dimension: $[h] = \frac{\frac{m}{s^2} \cdot m^2}{\left(\frac{m}{s}\right)^2} - m = m$.

Let evaluate the quantity: $h = \frac{9.81 \cdot (6.37 \cdot 10^6)^2}{(7.55 \cdot 10^3)^2} - 6.37 \cdot 10^6 = 6.13 \cdot 10^5 \text{ (m)}$.

Answer: $6.13 \cdot 10^5 \text{ m}$.

<http://www.AssignmentExpert.com/>