

Answer on Question #41989, Physics, Other

An extra solar planet is found orbiting a star in the Orion nebula. Determine the mass of the star if the planet has an orbital period of 420.0 Earth Days and has an orbital radius of  $1.29 \times 10^{11} \text{ m}$ ?

**Solution**

According to Kepler's Third Law, the orbital period  $T = 420.0 \text{ days} = 420.0 \cdot 86400 \text{ s} = 36288000 \text{ s}$  of the planet orbiting a star is:

$$T = 2\pi \sqrt{\frac{r^3}{GM'}}$$

where  $r = 1.29 \cdot 10^{11} \text{ m}$  is an orbital radius,  $G = 6.6 \cdot 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$  is the gravitational constant,  $M'$  is the mass of the star.

Therefore, the mass of the star is

$$M' = \frac{(2\pi)^2 r^3}{GT^2} = \frac{(2\pi)^2 (1.29 \cdot 10^{11})^3}{6.6 \cdot 10^{-11} \cdot (36288000)^2} = 0.975 \cdot 10^{30} \text{ kg}.$$

**Answer:  $0.975 \cdot 10^{30} \text{ kg}$ .**