

Answer on Question #41983 – Physics – Other

In the young's double slit experiment, the intensity on the screen at a point where path difference is λ is K . What will be the intensity at the point where path difference is $(\lambda/4)$?

- (1) $K/4$ (2) $K/2$ (3) K (4) Zero

Solution:

The intensity I is proportional to the time-average of the square of the total electric field

$$I \propto \langle E^2 \rangle = 4E_0^2 \cos\left(\frac{\phi}{2}\right) \langle \sin^2\left(\omega t + \frac{\phi}{2}\right) \rangle = 2E_0^2 \cos^2\left(\frac{\phi}{2}\right)$$

Therefore the intensity is

$$I = I_0 \cos^2\left(\frac{\phi}{2}\right)$$

where I_0 is maximum intensity on the screen. Substitute $\phi = \frac{2\pi}{\lambda} \delta$ (δ – path difference)

$$I = I_0 \cos^2\left(\frac{\pi\delta}{\lambda}\right)$$

Intensity is first case ($\delta = \lambda$):

$$I_1 = K = I_0 \cos^2\left(\frac{\pi\lambda}{\lambda}\right) = I_0 \cos^2(\pi) = I_0 \quad (1)$$

Intensity is second case ($\delta = \frac{\lambda}{4}$):

$$I_2 = I_0 \cos^2\left(\frac{\pi\lambda}{4}\right) = I_0 \cos^2\left(\frac{\pi}{4}\right) = \frac{I_0}{2} \quad (2)$$

$$(1) \text{in}(2): \\ I_2 = \frac{I_0}{2} = \frac{K}{2}$$

Hence, correct answer is (2) $K/2$

Answer: (2) $K/2$

