Answer on Question #41965 - Physics - Mechanics | Kinematics | Dynamics

A 40,000 kg railroad car initially traveling at 10 m/s collides inelastically with a 20,000 kg railroad car initially at rest. The cars stick together. What is their final speed?

Solution:

Given:

= 40000 kg,

 $_2 = 20000 \text{ kg}$

 $v_i = 10 \, \text{m/s},$

 $v_{2i} = 0$,

 $v_f = ?$

The equation that denotes the conservation of momentum is:

$$v_i + v_{2i} = (m + v_2)v_f$$

where, m_1 = mass of object or body 1

 m_2 = mass of object or body 2

 v_i = initial velocity of object or body 1

 v_{2i} = initial velocity of object or body 2

 v_f = final velocity of both the objects

The final velocity is given by

$$v_f = \frac{v_i + v_{2i}}{v_{2i}}$$

$$v_f = \frac{40000 \cdot 10}{40000 + 20000} = \frac{20}{3} = 6.67 \text{ m/s}$$

Answer. $v_f = 6.67 \text{ m/s}.$