Answer on Question \#41906 - Physics - Mechanics | Kinametics | Dynamics

1. A particle of mass m and charge q moves in a circular path in a magnetic field B. Show that its kinetic energy is proportional to r^{2} of the radius of curvature of its path. What is the angular momentum of the particle about the center of the circle?

Solution.

The motion of a particle is caused by the Lorentz force: $F=q v B$, where v is the velocity of the particle.

According the second Newton law, $F=m a$,
where the acceleration during a circular path is $a=\frac{v^{2}}{r}, r$ is the radius of curvature of the path.
So, we can write that $m \cdot \frac{v^{2}}{r}=q \nu B$. So, the velocity is $v=\frac{q B r}{m}$.
The kinetic energy of the particle: $E_{k}=\frac{m v^{2}}{2}=\frac{m}{2}\left(\frac{q B r}{m}\right)^{2}=\frac{q^{2} B^{2}}{2 m} r^{2}$.
We obtained that the kinetic energy is proportional to r^{2}.
Let find the angular momentum of the particle about the center of the circle:
$L=[\vec{r} \times \vec{p}]=r \cdot m v=r \cdot m v=m r \cdot \frac{q B r}{m}=q B r^{2}$.
Answer: $L=q B r^{2}$.

