

Answer on Question #41839, Physics, Other

A volume 0.8 m^3 contains 2 moles of a monatomic gas the average translational kinetic energy of molecules of the gas is $6.27 \cdot 10^{-21} \text{ J}$. Calculate

- the temperature of the gas ?
- the pressure of the gas?

Solution:

Given:

$$n = 2 \text{ moles},$$

$$V = 0.8 \text{ m}^3,$$

$$KE = 6.27 \cdot 10^{-21} \text{ J}$$

$$T = ?,$$

$$p = ?$$

a)

The average kinetic energy per molecule of the gas is:

$$KE = \left\langle \frac{1}{2}mv^2 \right\rangle = \frac{3}{2}kT$$

where k is Boltzmann constant $= 1.38066 \times 10^{-23} \text{ J/K}$

Thus,

$$T = \frac{2KE}{3k} = \frac{2 \cdot 6.27 \cdot 10^{-21}}{3 \cdot 1.38066 \cdot 10^{-23}} = 302.75 \text{ K}$$

b) The ideal gas equation:

$$pV = nRT$$

where n is the number of moles, $R = 8.3145 \text{ J/mol K}$ is the universal gas constant.

Thus,

$$p = \frac{nRT}{V} = \frac{2 \cdot 8.3145 \cdot 302.75}{0.8} = 6293.0 \text{ Pa}$$

Answer. $T = 302.75 \text{ K}$, $p = 6293.0 \text{ Pa}$.