Answer on Question \#41779, Physics, Other

A uniform electric field exists in $x-y$ plane. The potential of points $A(2 m, 2 m), B(-2 m, 2 m)$ and $\mathrm{C}(2 \mathrm{~m}, 4 \mathrm{~m})$ are $4 \mathrm{~V}, 16 \mathrm{~V}$ and 12 V respectively. The electric field is:
(1) $(4 \hat{\imath}+5 \hat{\jmath}) \mathrm{V} / \mathrm{m}$
(2) $(3 \hat{\imath}+4 \hat{\jmath}) \mathrm{V} / \mathrm{m}$
(3) $-(3 \hat{\imath}+4 \hat{\jmath}) \mathrm{V} / \mathrm{m}$
(4) $(3 \hat{\imath}-4 \hat{\jmath}) \mathrm{V} / \mathrm{m}$

Solution:

For a uniform field, the relationship between electric field (E), potential difference between points A and $B(\Delta)$, and distance between points A and $B(d)$ is:

$$
E=-\frac{\Delta V}{d}
$$

In x direction $\Delta V_{B A}=V_{A}-V_{B}=4-16=-12 \mathrm{~V}$ is the potential difference between A and B .
In y direction $\Delta V_{A C}=V_{C}-V_{A}=12-4=8 V$ is the potential difference between A and C.
The distance between A and B is

$$
d_{B A}=\sqrt{\left(x_{A}-x_{B}\right)^{2}+\left(y_{A}-y_{B}\right)^{2}}=\sqrt{(2+2)^{2}+(2-2)^{2}}=4
$$

The distance between A and C is

$$
d_{A C}=\sqrt{\left(x_{A}-x_{C}\right)^{2}+\left(y_{A}-y_{C}\right)^{2}}=\sqrt{(2-2)^{2}+(2-4)^{2}}=2
$$

Thus,

$$
\begin{gathered}
E_{x}=-\frac{\Delta V_{B A}}{d_{B A}}=\frac{12}{4}=3 \mathrm{~V} / \mathrm{m} \\
E_{y}=-\frac{\Delta V_{A C}}{d_{A C}}=-\frac{8}{2}=-4 \mathrm{~V} / \mathrm{m}
\end{gathered}
$$

So,

$$
E=E_{x} \hat{\imath}+E_{y} \hat{\jmath}=3 \hat{\imath}-4 \hat{\jmath} \mathrm{~V} / \mathrm{m}
$$

Answer. (4) $(3 \hat{\imath}-4 \hat{\jmath}) \mathrm{V} / \mathrm{m}$

