Answer on Question \#41703 - Physics - Other

Question.

The resultant of two forces at right angles is 5 N . when the angle between them is 120°; the resultant is $V 13 \mathrm{~N}$ then magnitudes of those two forces are

Given:
$F_{1}=5 N$
$\alpha_{1}=90^{\circ}$
$F_{2}=\sqrt{13} N$
$\alpha_{2}=120^{\circ}$
Find:
$f_{1}=$?
$f_{2}=$?

Solution.

We have two pictures (figures, situations).
Consider the first situation:

Fig.1. First situation(right angle).

In this case:

$$
F_{1}^{2}=f_{1}^{2}+f_{2}^{2}
$$

Consider the second situation:

Fig.2.1. Second situation (angle α_{2}).
Or it can be represented by the triangle rule:

Fig.2.2. Second situation (angle α_{2}). Triangle rule.
Use the law of cosines:

$$
F_{2}^{2}=f_{1}^{2}+f_{2}^{2}-2 f_{1} f_{2} \cos \left(\pi-\alpha_{2}\right)
$$

Thus, we obtained the system of equations for f_{1} and f_{2} :
$\left\{\begin{array}{c}f_{1}^{2}+f_{2}^{2}=F_{1}^{2} \\ f_{1}^{2}+f_{2}^{2}-2 f_{1} f_{2} \cos \left(\pi-\alpha_{2}\right)=F_{2}^{2}\end{array}\right.$
Substitute F_{1}, F_{2}, α_{2} :
$\left\{\begin{array}{c}f_{1}^{2}+f_{2}^{2}=25 \\ f_{1}^{2}+f_{2}^{2}-f_{1} f_{2}=13\end{array}\right.$
Solution of this system of equations is:
$f_{1}=3 ; f_{2}=4$ or $f_{1}=4 ; f_{2}=3$

Answer.

$f_{1}=3 N$
$f_{2}=4 N$

