

Answer on Question # 41701 – Physics, Mechanics | Kinematics | Dynamics

1. If a and b are two sides of a parallelogram and c and d are the diagonals then:

- (1) $c^2 + d^2 = a^2 + b^2$
- (2) $c^2 + d^2 = 2(a^2 + b^2)$
- (3) $c^2 - d^2 = a^2 - b^2$
- (4) $c^2 - d^2 = 2(a^2 - b^2)$.

Solution.

If a and b are two sides of a parallelogram and c and d are the diagonals, then $\vec{a} + \vec{b} = \vec{c}$, $\vec{a} - \vec{b} = \vec{d}$, where the directions of the vectors can be chosen in such a way that direction of each vector coincides with the direction of an appropriate section.

Let bring the equalities to the square:

$$a^2 + 2\left(\vec{a} \cdot \vec{b}\right) + b^2 = c^2, \quad a^2 - 2\left(\vec{a} \cdot \vec{b}\right) + b^2 = d^2.$$

The sum of this equalities is $2(a^2 + b^2) = c^2 + d^2$.

Answer: the right answer is the second one.