Answer on Question \#41555, Physics, Molecular Physics | Thermodynamics

## Question.

A 0.5 kg piece of metal ( $c=600 / \mathrm{kgK}$ ) at 300 degree celcius is dumped into a large pool of water at 20 degrees celcius. Assuming the change in temperature of water to be negligible, calculate the overall change in entropy for the system:
85.5J/K
67.4J/K
122.3J/K
202.3J/K
$m=0.5 \mathrm{~kg}$
$c=600 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$T_{1}=300^{\circ} \mathrm{C}=573 \mathrm{~K}$
$T_{2}=20^{\circ} \mathrm{C}=293 \mathrm{~K}$
$d S=?$

## Solution.

By definition entropy is:

$$
\Delta S=\int \frac{\delta Q}{T}
$$

In our case,

$$
\delta Q=c m d T
$$

Therefore,

$$
\Delta S=\int_{T_{2}}^{T_{1}} \frac{\delta Q}{T}=\int_{T_{2}}^{T_{1}} c m \frac{d T}{T}=c m \ln \frac{T_{1}}{T_{2}}
$$

So,

$$
\Delta S=c m \ln \frac{T_{1}}{T_{2}}=0.5 \cdot 600 \cdot \ln \frac{573}{293}=300 \cdot \ln 1.956=300 \cdot 0.671 \approx 202 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

## Answer.

$$
\Delta S=c m \ln \frac{T_{1}}{T_{2}}=202.3 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

