

Answer on Question #41465, Physics, Mechanics

A block of wood is placed on an inclined plane. The angle θ (where θ is non-zero) of the inclined plane is gradually increased until the block is at the verge of sliding down the incline. What is the coefficient of friction between the block and the incline?

- a. $\cos\theta$ b. $\tan\theta$ c. $\sin\theta$ d. $\cot\theta$

Solution

$F_{\parallel} = W \sin \theta$ and $F_{\perp} = W \cos \theta$ are parallel and perpendicular projections of weight on an inclined plane.

For equilibrium, we must have $F_{\perp} = F_{\parallel}$.

At a certain angle of inclination, θ_k , at which the block slides down at constant velocity, the friction force F_k and F_{\parallel} become equal:

$$F_k = F_{\parallel} = W \sin \theta_k.$$

Since, by definition $\mu_k = \frac{F_k}{N}$, we may write:

$$\mu_k = \frac{W \sin \theta_k}{N} = \frac{W \sin \theta_k}{W \cos \theta_k} = \tan \theta_k.$$

Answer: b. $\tan\theta$.