Answer on Question #41464 - Physics - Mechanics

A 2.0 kg stone tied to the the end of an inextensible string is whirled around in a horizontal circle of radius 1.5 m at auniform angular speed 2π rad/s Calculate the rotational kinetic energy of the stone.

220.7 J

88.8 J

47.4 J

246.7 J

Solution:

m = 2kg - mass of the stone;

$$\omega = 2\pi \frac{\text{rad}}{\text{s}} - \text{angular speed};$$

R = 1.5m - radius of the circle;

 $J=mR^2-moment$ of inertia for the stone (Point mass m at a distance R from the axis of rotation)

Formula for the rotational kinetic energy:

$$E_k = \frac{\omega^2 J}{2} = \frac{(2\pi)^2 \cdot mR^2}{2} = 2\pi^2 mR^2 = 2 \cdot \left(3.14 \frac{rad}{s}\right)^2 \cdot 2kg \cdot 1.5m^2 = 59.2J$$

Answer: rotational kinetic energy of the stone is equal to 59.2J.