

Answer on Question #41440, Physics, Mechanics | Kinematics | Dynamics

Question:

A pulley is rotating at the rate of 32 rev/min. A motor speeds up the wheel so that 30 s later it is turning at 82 rev/min. what is the average angular acceleration in radians per second

- a. 0.17
- b. 2.11
- c. 0.32
- d. 1.41

Answer:

The angular acceleration can be defined as:

$$\alpha = \frac{\Delta\omega}{\Delta t}$$

where t is time, ω is angular speed.

Angular speed equals (one revolution is equal to 2π radians):

$$\omega = 2\pi f$$

where f is number of revolution per second (minute)

Therefore:

$$\alpha = \frac{2\pi(82 - 32) \frac{1}{\text{min}}}{30 \text{ s}} = \frac{50}{60} \left(\frac{1}{\text{s}} \right) = 0.17 \frac{1}{\text{s}^2}$$

Answer: $0.17 \frac{1}{\text{s}^2}$