Answer on Question#41348, Physics, Mechanics

The position of a particle along the x-axis depends on the time according to the equation according to the at^2 - bt^3 , where x is in metres and t in seconds. What are the dimensions of and units of a and b?

a.
$$LT^{-2}$$
, m/s^2 ; LT^{-3} , m/s^3

b.
$$LT^2$$
, m/s^{-2} ; LT^3 , m/s^{-3}

c.
$$L^{-1}T^{-2}$$
, m^{-1}/s^2 ; LT^{-3} , m/s^3

d.
$$LT^{-2}$$
, m/s^2 ; $L^{-2}T^{-3}$, m^{-2}/s^3

Solution:

Given:

$$x = at^2 - bt^3$$

In this equation x is a distance. The unit of x is length (L) in meters (m).

So both terms being substracted, at^2 and bt^3 , have the units of length.

Since at^2 has units of L, since you get L by multiplying a by a time squared (T²), then a must have units of L/T² or m/s² (LT⁻²).

We can do similar reasoning for bt^3 . We get L out by multiplying b by a time cubed. So b has to have units of L divided by time³.

Thus b dimension is LT⁻³,m/s³.

Answer. a. LT^{-2} , m/s²; LT^{-3} , m/s³.

http://www.AssignmentExpert.com/