Answer on Question\#41348, Physics, Mechanics

The position of a particle along the x-axis depends on the time according to the equation according to the $a^{2}{ }^{2}-b t^{3}$, where x is in metres and t in seconds. What are the dimensions of and units of a and b ?
a. $\mathrm{LT}{ }^{-2}, \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{LT}^{-3}, \mathrm{~m} / \mathrm{s}^{3}$
b. $\mathrm{LT}^{2}, \mathrm{~m} / \mathrm{s}^{-2} ; \mathrm{LT}^{3}, \mathrm{~m} / \mathrm{s}^{-3}$
c. $\mathrm{L}^{-1} \mathrm{~T}^{-2}, \mathrm{~m}^{-1} / \mathrm{s}^{2} ; \mathrm{LT}^{-3}, \mathrm{~m} / \mathrm{s}^{3}$
d. $\mathrm{LT}^{-2}, \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{L}^{-2} \mathrm{~T}^{-3}, \mathrm{~m}^{-2} / \mathrm{s}^{3}$

Solution:

Given:

$$
x=a t^{2}-b t^{3}
$$

In this equation x is a distance. The unit of x is length (L) in meters (m).

So both terms being substracted, $a t^{2}$ and $b t^{3}$, have the units of length.

Since $a t^{2}$ has units of L, since you get L by multiplying a by a time squared $\left(T^{2}\right)$, then a must have units of $\mathrm{L} / \mathrm{T}^{2}$ or $\mathrm{m} / \mathrm{s}^{2}\left(\mathrm{LT}^{-2}\right)$.

We can do similar reasoning for $b t^{3}$. We get L out by multiplying b by a time cubed. So b has to have units of L divided by time ${ }^{3}$.

Thus b dimension is $\mathrm{LT}^{-3}, \mathrm{~m} / \mathrm{s}^{3}$.

Answer. a. $\mathrm{LT}^{-2}, \mathrm{~m} / \mathrm{s}^{2} ; \mathrm{LT}^{-3}, \mathrm{~m} / \mathrm{s}^{3}$.

