Answer on Question \#41302 - Physics - Other

Question.

In a simple pendulum experiment to determine inaccessible height, $\mathrm{T}^{\wedge}\{2\} / \mathrm{s}^{\wedge}\{2\}$ was plotted on the vertical axis and h / cm on the horizontal axis. T is the period and h is the height of the pendulum bob from the floor. Which of the following gives the inaccessible height H ?

Given: $T^{2}\left[s^{2}\right]$
Find: $h[\mathrm{~cm}]$

Solution.

The period of simple pendulum is:

$$
T=2 \pi \sqrt{\frac{h}{g}}
$$

T is a period of the motion, the time for a complete oscillation;
h is the length of the pendulum;
g is the gravitational acceleration.

Therefore,

$$
\begin{aligned}
T^{2} & =4 \pi^{2} \frac{h}{g}=\frac{4 \pi^{2}}{g} h \\
h & =\frac{g}{4 \pi^{2}} T^{2}[\mathrm{~m}]
\end{aligned}
$$

or in centimeters:

$$
h=\frac{g}{4 \pi^{2}} T^{2} \cdot 100=\frac{25 \mathrm{~g}}{\pi^{2}} T^{2}[\mathrm{~cm}]
$$

It is a linear dependence T^{2} on h.
So, obtain the following graph depending T^{2} on h :

Answer.

$h=\frac{25 \mathrm{~g}}{\pi^{2}} T^{2}[\mathrm{~cm}]$
http://www.AssignmentExpert.com/

