


Answer on Question #41236, Physics, Electrodynamics

The electric potential due to a uniformly charged ring of radius  $R$  having charge  $Q$  at a distance  $\sqrt{3}R$  on its axis.

**Solution**

Consider a uniformly charged ring of radius  $R$  and charge density  $\lambda = \frac{Q}{2\pi R}$ .



Consider a small differential element  $dl = R d\phi'$  on the ring. The element carries a charge

$$dq = \lambda dl = \lambda R d\phi',$$

and its contribution to the electric potential at P is

$$dV = \frac{1}{4\pi\epsilon_0} \frac{dq}{r} = \frac{1}{4\pi\epsilon_0} \frac{\lambda R d\phi'}{\sqrt{R^2 + z^2}},$$

where  $r = \sqrt{R^2 + z^2}$ .

The electric potential at P due to the entire ring is

$$V = \int dV = \frac{1}{4\pi\epsilon_0} \frac{\lambda R}{\sqrt{R^2 + z^2}} \oint d\phi' = \frac{1}{4\pi\epsilon_0} \frac{2\pi\lambda R}{\sqrt{R^2 + z^2}} = \frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{R^2 + z^2}},$$

where we have substituted  $Q = 2\pi\lambda R$  for the total charge on the ring.

In our case  $z = \sqrt{3}R$  electric potential is

$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{R^2 + (\sqrt{3}R)^2}} = \frac{1}{4\pi\epsilon_0} \frac{Q}{\sqrt{R^2 + 3R^2}} = \frac{1}{4\pi\epsilon_0} \frac{Q}{2R} = \frac{Q}{8\pi\epsilon_0 R}.$$

**Answer:**  $\frac{Q}{8\pi\epsilon_0 R}$ .